Synthesis of 6-Hetaryl-5,5-dialkyl-3,3-dimethyltetrahydropyran-2,4-diones by Reformatsky Reaction

V. V. Shchepin, A. E. Korzun, and Yu. Kh. Sazhneva

Perm State University, ul. Bukireva 15, Perm, 614000 Russia

Received November 15, 2002

Abstract—Zinc enolates derived from ethyl 4-bromo-2,2,4-trimethyl-3-oxopentanoate and 4-bromo-4-ethyl-2,2-dimethyl-3-oxohexanoate react with 2-furan-, 2-thiophene-, 1-(3-nitrophenyl)-2-pyrrole-, 1-acyl-3-indole-, and 2-pyridinecarbaldehydes to give the corresponding 6-hetaryl-5,5-dialkyl-3,3-dimethyltetrahydropyran-2,4-diones.

Compounds possessing a 2,4-dioxotetrahydropyran fragment are components of various natural products, and they exhibit versatile biological activity [1-3]. We previously developed a new approach to the synthesis of 6-alkyl-, 6-alkenyl-, and 6-aryl-substituted tetrahydropyran-2,4-diones via Reformatsky reaction [4]. The goal of the present work was to elucidate the possibility for synthesizing analogous compounds having hetaryl groups in position 6 of the pyran ring. For this purpose, ethyl 4-bromo-2,2,4-trimethyl-3-oxopentanoate (Ia) and ethyl 4-bromo-4-ethyl-2,2-dimethyl-3oxohexanoate (Ib) were converted by treatment with metallic zinc into the corresponding zinc enolates **IIa** and **IIb** which were brought into reaction with 2-furan-, 2-thiophene-, 1-(3-nitrophenyl)-2-pyrrole-, 1-acyl-3indole-, and 2-pyridinecarbaldehydes. Primary intermediate adducts IIIa-IIIi underwent spontaneous intramolecular cyclization to afford 6-hetaryl-5,5-dialkyl-3,3-dimethyl-2,3,5,6-tetrahydropyran-2,4-diones **IVa**–**IVi** as final products (Scheme 1).

However, in the reaction of zinc enolate **Ha** with 2-pyridinecarbaldehyde, instead of the expected 5,5-diethyl-3,3-dimethyl-6-(2-pyridyl)tetrahydropyran-2,4-dione, we isolated acyclic product, ethyl 5-hydroxy-3-

oxo-5-(2-pyridyl)-2,2,4,4-tetramethylpentanoate (**VI**) (Scheme 2). Presumably, cyclization of intermediate **V** is hampered owing to formation of a dative bond between the zinc atom and nitrogen atom in the pyridine ring. The probability for formation of an analogous bond in intermediate **IIIi** having two ethyl groups at C⁴ is reduced for steric reasons; as a result, the corresponding tetrahydropyran-2,4-dione **IVi** is obtained.

The structure and purity of the products were confirmed by the data of elemental analysis and IR and 1H NMR spectroscopy. The IR spectra of **IVa–IVi** contain absorption bands in the regions 1710–1720 and 1750–1760 cm $^{-1}$, which are typical of the ketone and lactone carbonyl groups in pyran-2,4-diones. In the 1H NMR spectra of these compounds, a signal from the 6-H proton characteristically appeared at δ 5.30–6.06 ppm.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrophotometer from samples dispersed in mineral oil. The ¹H NMR spectra were obtained from solutions in

I, II, R = Me (a), Et (b); III, IV, R = Me, Het = 2-furyl (a), 2-thienyl (b), 1-(3-nitrophenyl)-2-pyrrolyl (d), 1-acetyl-3-indolyl (e), 1-propionyl-3-indolyl (g), 1-butyryl-3-indolyl (h); R = Et, Het = 2-thienyl (c), 1-acetyl-3-indolyl (f), 2-pyridyl (i).

CDCl₃ using an RYa-2310 instrument (60 MHz); the chemical shifts were measured relative to HMDS as internal reference.

6-Hetaryl-5,5-dialkyl-3,3-dimethyltetrahydro- pyran-2,4-diones IVa–IVi. Ester **Ia** or **Ib**, 0.028 mol, was added dropwise to a suspension of 0.03 mol of zinc (prepared as fine turnings) in a mixture of 5 ml of diethyl ether and 5 ml of ethyl acetate. The mixture was heated to initiate the reaction and (after the entire amount of the bromo derivative was added) was heated for 0.5 h at the boiling point. Appropriate heterocyclic aldehyde, 0.018 mol, was then added, and the mixture was heated for 0.5 h at the boiling point, cooled, treated with 10% acetic acid, and extracted with diethyl ether. The extract was dried over sodium sulfate, the solvent was distilled off, and the residue was recrystallized twice from methanol.

6-(2-Furyl)-3,3,5,5-tetramethyltetrahydropyran-2,4-dione (**IVa**). Yield 67%, mp 74–76°C. ¹H NMR spectrum, δ, ppm: 1.06 s and 1.13 s (3H each, 5-Me), 1.43 s (6H, 3-Me), 5.30 s (1H, 6-H), 6.40 m and 7.30 d (3H, 2-furyl). Found, %: C 65.90; H 6.75. C₁₃H₁₆O₄. Calculated, %: C 66.09; H 6.83.

3,3,5,5-Tetramethyl-6-(2-thienyl)tetrahydro-pyran-2,4-dione (**IVb**). Yield 72%, mp 127–129°C. ¹H NMR spectrum, δ, ppm: 1.03 s and 1.06 s (3H each, 5-Me), 1.40 s (6H, 3-Me), 5.63 s (1H, 6-H), 6.90–7.35 m (3H, 2-thienyl). Found, %: C 61.76; H 6.30; S 12.53. C₁₃H₁₆O₃S. Calculated, %: C 61.88; H 6.39; S 12.71.

5,5-Diethyl-3,3-dimethyl-6-(2-thienyl)tetra-hydropyran-2,4-dione (**IVc**). Yield 86%, mp 64–66°C. 1 H NMR spectrum, δ , ppm: 0.70 t and 0.80 t (3H each, CH₂**Me**), 1.20–2.00 m (4H, CH₂Me), 1.43 s (6H, 3-Me), 6.06 s (1H, 6-H), 6.85–7.40 m (3H, 2-thienyl). Found, %: C 64.17; H 7.06; S 11.20. $C_{15}H_{20}O_{3}S$. Calculated, %: C 64.26; H 7.19; S 11.44.

3,3,5,5-Tetramethyl-6-[1-(3-nitrophenyl)-2-pyr-rolyl]tetrahydropyran-2,4-dione (IVd). Yield 51%, mp 142–144°C. 1 H NMR spectrum, δ , ppm: 1.02 s and

1.14 s (3H each, 5-Me), 1.30 s and 1.33 s (3H each, 3-Me), 5.17 s (1H, 6-H), 6.38 m and 6.90 m (3H, 2-pyrrolyl), 7.80 m and 8.23 m (4H, C_6H_4). Found, %: C 64.15; H 5.60; N 7.99. $C_{19}H_{20}N_2O_5$. Calculated, %: C 64.04; H 5.66; N 7.86.

6-(1-Acetyl-3-indolyl)-3,3,5,5-tetramethyltetra-hydropyran-2,4-dione (IVe). Yield 70%, mp 156–158°C. ¹H NMR spectrum, δ, ppm: 1.05 s (6H, 5-Me), 1.40 s and 1.46 s (3H each, 3-Me), 2.58 s (3H, COMe), 5.70 s (1H, 6-H), 7.10–7.50 m and 8.43 d (5H, 3-indolyl). Found, %: C 69.60; H 6.35; N 4.14. C₁₉H₂₁NO₄. Calculated, %: C 69.71; H 6.47; N 4.28.

6-(1-Acetyl-3-indolyl)-5,5-diethyl-3,3-dimethyl-tetrahydropyran-2,4-dione (**IVf**). Yield 76%, mp 130–132°C. 1 H NMR spectrum, δ, ppm: 0.70 t and 0.80 t (3H each, CH₂Me), 1.20–2.00 m (4H, CH₂Me), 1.40 s and 1.50 s (3H each, 3-Me), 6.00 s (1H, 6-H), 7.10–7.60 m and 8.40 d (5H, 3-indolyl). Found, %: C 70.88; H 7.01; N 4.06. C₂₁H₂₅NO₄. Calculated, %: C 70.97; H 7.09; N 3.94.

3,3,5,5-Tetramethyl-6-(1-propionyl-3-indolyl)tetrahydropyran-2,4-dione (**IVg**). Yield 60%, mp 162–163°C. ¹H NMR spectrum, δ, ppm: 1.03 s (6H, 5-Me), 1.28 t (3H, **Me**CH₂CO), 1.40 s and 1.46 s (3H each, 3-Me), 2.97 q (2H, MeCH₂CO), 5.71 s (1H, 6-H), 7.10–7.52 m and 8.40 d (5H, 3-indolyl). Found, %: C 70.22; H 6.72; N 4.17. $C_{20}H_{23}NO_4$. Calculated, %: C 70.36; H 6.79; N 4.10.

6-(1-Butyryl-3-indolyl)-3,3,5,5-tetramethyltetra-hydropyran-2,4-dione (IVh). Yield 65%, mp 164–166°C. ¹H NMR spectrum, δ, ppm: 1.01 t (3H, **Me**CH₂CH₂CO), 1.04 s (6H, 5-Me), 1.39 s and 1.45 s (3H each, 3-Me), 1.73 m (2H, MeCH₂CH₂CO), 2.86 t (2H, MeCH₂CH₂CO), 5.73 s (1H, 6-H), 7.10–7.51 m and 8.42 d (5H, 3-indolyl). Found, %: C 70.85; H 7.00; N 4.09. C₂₁H₂₅NO₄. Calculated, %: C 70.97; H 7.09; N 3.94.

5,5-Diethyl-3,3-dimethyl-6-(2-pyridyl)tetra-hydropyran-2,4-dione (IVi). Yield 60%, mp 58–59°C. 1 H NMR spectrum, δ , ppm: 0.70 t and 0.83 t (3H each, MeCH₂), 1.30–2.00 m (4H, CH₂Me), 1.43 s and

1502 SHCHEPIN et al.

1.60 s (3H each, 3-Me), 5.50 s (1H, 6-H), 7.10–7.90 m and 8.53 d (4H, 2-pyridyl). Found, %: C 69.65; H 7.64; N 5.26. C₁₆H₂₁NO₃. Calculated, %: C 69.78; H 7.69; N 5.09.

Ethyl 5-hydroxy-2,2,4,4-tetramethyl-3-oxo-5-(2-pyridyl)pentanoate (VI) was synthesized as described above for compounds **IVa–IVi**. Yield 49%, mp 74–76°C. IR spectrum, ν, cm⁻¹: 1690, 1740 (C=O); 3400 (OH). ¹H NMR spectrum, δ, ppm: 1.03 s, ~1.12 s, 1.15 s, and 1.30 s (3H each, 2-Me, 4-Me), 1.10 t (3H, **Me**CH₂O), 4.02 q (2H, OCH₂), 4.40 br.s (1H, OH), 5.02 s (1H, 5-H), 7.00–7.80 m and 8.40 d (4H, 2-pyridyl). Found, %: C 65.40; H 7.81; N 4.68. $C_{16}H_{23}NO_4$. Calculated, %: C 65.51; H 7.90; N 4.77.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-96036).

REFERENCES

- 1. Interhalt, B. and Weyrich, K., *Arch. Pharm.*, 1980, vol. 313, p. 795.
- Kende, A.S., Koch, K., Dorey, G., Kaldor, J., and Liu, K., J. Am. Chem. Soc., 1993, vol. 115, p. 9842.
- 3. Kende, A.S., Liu, K., Kaldor, J., Dorey, G., and Koch, K., *J. Am. Chem. Soc.*, 1995, vol. 117, p. 8258.
- 4. Shchepin, V.V. and Gladkova, G.E., *Russ. J. Org. Chem.*, 1995, vol. 31, p. 1016.